Deforming the Lie Algebra of Vector Fields on $S^1$ Inside the Poisson Algebra on ˙ T * S 1

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J ul 1 99 7 Deforming the Lie algebra of vector fields on S 1 inside the Poisson algebra on Ṫ ∗ S 1

We study deformations of the standard embedding of the Lie algebra Vect(S 1) of smooth vector fields on the circle, into the Lie algebra of functions on the cotangent bundle T * S 1 (with respect to the Poisson bracket). We consider two analogous but different problems: (a) formal deformations of the standard embedding of Vect(S 1) into the Lie algebra of functions on ˙ T * S 1 := T * S 1 \S 1 ...

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

Deforming the Lie Superalgebra of Contact Vector Fields on S 1 | 1 inside the Lie Superalgebra of Superpseudodifferential operators on S 1 | 1

We classify nontrivial deformations of the standard embedding of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional supercircle into the Lie super-algebra of superpseudodifferential operators on the supercircle. This approach leads to the deformations of the central charge induced on K(1) by the canonical central extension of SΨDO.

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

On dimensions of derived algebra and central factor of a Lie algebra

Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1998

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s002200050473